Factors Affecting The Cost Of Steel Structure Buildings

Steel structure buildings are increasingly popular in the construction market due to their rapid construction speed, factory-made components, high level of industrialization, good appearance after installation, long service life of steel materials, durability, and recyclability of materials. As the popularity of steel structure workshops continues to grow, the issue of construction cost has also attracted more and more attentions. How to ensure the durability of the steel frame structure while controlling the cost has become a key concern for many steel structure suppliers. Below are some key factors affecting the cost of steel structure workshops and how to control costs through reasonable design and construction management.

 

Raw Material Factors: Steel and sheet steel materials are the main components of the steel prefabricated building's framework, accounting for about 70% to 80% of the total cost. Fluctuations in steel market prices due to supply and demand directly affect the cost of the steel prefabricated buildings. The cost of light steel structures varies with different materials and specifications of the sections, as well as the thickness and material of the cladding plates. Therefore, raw materials are a key factor affecting the cost of light weight steel structure garages.

 

Design Factors: Reasonable design is the key factor for saving raw materials and controlling budget. Different design drawings will affect the amount of raw materials used, thereby affecting the total cost. Experienced designers, by considering the location and environment of the steel structure workshop, as well as the specific needs of the client, can provide cost-effective architectural design drawings. Similarly, in environments with few earthquakes or low wind forces, excessive stacking of materials or over-emphasizing the seismic capacity of the steel framed structure often leads to a sharp increase in construction costs. Therefore, choosing a designer with industry experience is crucial during the design phase of the steel structure buildings.

 

Foundation Design: The cost of the foundation is closely related to geological conditions. The construction of the foundation is an important factor in the stability of the steel structure factory building, and its construction period accounts for about 25% of the total construction period, with the cost of foundation construction accounting for 15% of the total cost of the steel structure project. In the design phase, it is necessary to fully consider the geological report, choose the appropriate foundation type, and reasonably control the size and depth of the foundation to effectively control the total cost. For example, in areas with soft soil, the foundation depth is deeper, and the cost is often higher. In areas with hard soil, the foundation for the steel structure is shallower, and stability can be maintained without the need for a deep foundation.

 

Column Grid Design: The column grid layout determines the span, spacing, and number of columns in the steel structure building. Under the premise of meeting the needs and process requirements, it is preferable to choose a small-span portal steel frame. Although this small-span design increases the number of columns, it reduces the use of materials such as the steel structure roof and steel beams, achieving better economic benefits. The economic column spacing is usually 6 to 9 meters, and exceeding this range will increase the steel consumption and thus the cost. Of course, the number and layout of columns should not only meet economic requirements but also consider the needs of the steel structure workshop. In some steel structure industrial building that need to be used as warehouses, an overly dense number of columns increases the risk when vehicles enter and exit or when moving items.

 

Beam Design: The rectangular section beam is a common bending member, often used in design, but has a low material utilization rate. One reason is that the material stress near the neutral axis is low; the other is that the bending moment of the beam changes along the length. Because most sections of the equal section beam have low stress, the material is not well utilized, and the material utilization rate can only be improved when the beam is subjected to axial force. Therefore, during the design, planar trusses can be used to replace rectangular beams. Planar trusses are equivalent to hollowed beams, removing excess material from the beam, which is both economical and reduces self-weight. It can also develop into a spatial grid, greatly improving the material utilization rate.

 

Construction and Installation Factors: The length of the construction period also affects the cost. A long construction period often leads to an overspend in the overall budget of the prefabricated steel structure workshop. How to save the installation and construction period to reasonably control costs is particularly important. Among them, the proficiency of the installation team is the key to determining the construction period. Experienced installation teams, through reasonable time arrangements for the assembly of various components and the reasonable use of engineering machinery and equipment during installation, can improve installation efficiency without increasing a large amount of installation costs. Building a steel structure workshop is a complex system project, involving many aspects such as the construction period, policy changes, and project scale, all of which can affect the cost.

steel building prefabricated steel structure building construction

How to Avoid Common Pitfalls in Steel Joints A Guide to Consistent Tightening and Correct Torque

In the area of steel structure construction, the excellence of connections is paramount. A solid connection not only upholds the prefabricated steel frame structure building's strength but also boosts its safety and lifespan. We'll discuss the reasons behind these problems, their potential impacts, and offer smart solutions.

 

Uniform Tightening: The Key to a Seamless Fit

Before you get your hands dirty with installation, it's vital to iron out any kinks in the components to keep them in line. For a uniform tightening process, start from the heart of the connection and work your way out symmetrically. Plus, wielding the right tools for the job is a must to dodge over-tightening and uneven force. For example two beams are linked by a steel structure. Uneven bolt tightening could spell disaster for load-bearing, shaking the very foundation of stability. By hammering home the need for uniform tightening, we dodge a bullet of structural jeopardy.

 

Torque Values: Precision for High-Strength Bolts

When you're in the business of high-strength bolts, nailing the right torque is non-negotiable for airtight connections.  A sloppy paint job or a smudge could be a deal-breaker. Let's get real about torque: in a steel structure where high-strength bolts are the glue between a column and a beam, over-torqueing could lead to stress overload, courting disaster like bolt breakage or a catastrophic collapse. So, let's drive home the point—sticking to torque specs is your safety net against such perils.

prefabricated steel frames

The Art of Steel Structure Reinforcement Techniques, Strategies, and Sustainability

Steel structures are highly favored for their lightness, high strength, and aesthetic appeal, making them widely used in large-scale architectural steel structures. However, as time passes and the load increases, the stability of steel structures becomes crucial. This article will explore the importance and methods of prefabricated steel structure building reinforcement, helping readers understand this critical civil engineering issue.

 

The Necessity and Classification of Steel Structure Reinforcement

When steel structures face insufficient load-bearing capacity or damage, reinforcement and strengthening are required. Reinforcement work should be carried out after professional inspection, and measures should be taken based on the extent of the damage, either locally or as a whole. There is a variety of reinforcement techniques, including adding supports, changing structural calculation diagrams, adhesive reinforcement, and prestressed reinforcement, among others.

 

The method of adding supports involves installing additional supports in the middle of beams or slab spans to reduce the span and increase load-bearing capacity, while also limiting deflection. This method is suitable for large-span steel structures but may affect the use of space. Changing the steel structural calculation diagram involves improving steel structural stability and load-bearing capacity through measures such as changing load distribution and adding supports. Adhesive reinforcement of steel structures uses adhesives to bond materials to damaged areas, reducing stress and offering advantages such as not increasing self-weight, fatigue resistance, and corrosion resistance. Adhesive fiber-reinforced plastic reinforcement is suitable for various steel structural components and has characteristics such as resistance to corrosion and moisture, but requires fireproof treatment. Prestressed reinforcement technology for prefabricated steel structure buildings includes direct bonding and overall reinforcement methods, suitable for the reinforcement of components or the entire structure.

 

Advantages and Challenges of Steel Structure Reinforcement Techniques

The selection of steel structure reinforcement techniques must consider economic efficiency, efficiency, and reliability. Prestressed reinforcement technology is favored because it can be carried out without unloading or production shutdown, reducing deformation and eliminating stress beyond the limit. It also reduces the stress of bond interface delamination, improving the reliability of reinforcement and reducing costs.

Light Gauge Steel Frame Structure Drawing Prefabricated Steel Structure Building Manufacturing

The Heart of Industrial Steel Structures The Mystery of Fabrication Quality

On the modern architectural stage, industrial steel structures have become the preferred choice for industrial construction with their unique advantages such as rapid construction, large space design, and flexible spatial division. But have you ever wondered about the "heart" of these colossal structures—the fabrication quality of steel components—and how it profoundly affects the installation and use of the entire building? Today, let's explore the mystery behind the fabrication quality of industrial steel structures.

 

Steel Components: The Cornerstone of Structure

The main body of an prefabricated steel framed building is composed of a series of steel components, and the fabrication quality of these components directly relates to the stability and safety of the entire building. Imagine if the straightness of the steel columns is not sufficient, or if the machining precision of the connection holes is not up to par; we might encounter unforeseen difficulties during the installation process, such as components that cannot be correctly connected, or structures that pose safety hazards after installation.

 

Precise Fabrication: Ensuring Smooth Installation

To ensure a smooth installation process for bolted steel structure, the fabrication of steel components must be impeccable. This includes, but is not limited to:

Straightness and twist of steel columns: Ensuring that the columns stand upright and do not twist under load.

Machining precision of connection holes: Accurate hole positions are key to seamless component connections.

Straightness of roof beams: Guaranteeing the flatness and stability of the roof structure.

Fabrication precision of column and beam connection plates: Directly affecting the load-bearing capacity and durability of the structure.

 

Quality Inspection: An Indispensable Step

After fabrication, the quality inspection of steel components is equally important. This is not only to confirm dimensions and precision but also to ensure that the fabrication quality meets design requirements. Through rigorous quality inspections, we can identify and correct issues in a timely manner, avoiding unnecessary troubles during installation.

 

Technological Innovation: Enhancing Fabrication Quality

With the advancement of technology, steel fabrication techniques are continuously improving. Modern fabrication equipment and methods, such as CNC cutting and laser cutting, can significantly increase the precision and efficiency of fabrication. Additionally, the application of BIM (Building Information Modeling) technology makes the design and fabrication process more accurate and efficient.

 

The fabrication quality of industrial steel structures is like the lifeblood of the building, the source of its vitality. Only by ensuring the fabrication quality of steel components can we construct industrial steel structures that are both aesthetically pleasing and safe. 

steel structure fabrication company steel structure commercial building